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Testing the evolutionary theory of inversion
polymorphisms in the yellow monkeyflower
(Mimulus guttatus)

Paris Veltsos 1,2, Luis J. Madrigal-Roca 1 & John K. Kelly 1

Chromosomal inversions have been implicated in a remarkable range of nat-
ural phenomena, but it remains unclear howmuch they contribute to standing
genetic variation. Here, we evaluate 64 inversions that segregate within a
single natural population of the yellow monkeyflower (Mimulus guttatus).
Nucleotide diversity patterns confirm low internal variation for the derived
orientation (predicted by recent origin), elevated diversity between orienta-
tions (predicted by natural selection), and localized fluctuations (predicted by
gene flux). Sequence divergence between orientations varies idiosyncratically
by position, not following the suspension bridge pattern predicted if the
breakpoints are the targets of selection. Genetic variation in gene expression is
not inflated close to inversion breakpoints but is clearly partitioned between
orientations. Like sequence variation, the pattern of expression variation
suggests that the capture of coadapted alleles is more important than the
breakpoints for the fitness effects of inversions. This work confirms several
evolutionary predictions for inversion polymorphisms, but clarity emerges
only by synthesizing estimates across many loci.

Chromosomal inversions have been an enduring focus of evolutionary
biology. Dobzhansky’s demonstration of natural selection on inver-
sions of Drosophila pseudoobscura1 was integral to the modern
synthesis and inversions were routinely invoked in the extensive stu-
dies of ‘supergenes’ by the British ecological genetics school2–4. They
can generate under-dominance for fertility if recombination within
inverted regions generates genetically unbalanced gametes. Across
both plants and animals, there is a remarkable association between
inversions and meiotic drive5–9. Recent studies have implicated inver-
sions in local adaptation10–16, accelerated speciation6,17–26, the evolution
of migration and species ranges27,28, sexual selection and mate
choice25,29,30, and sex-chromosome evolution29,31–34. Reviewing the lit-
erature, Faria et al.35 conclude that the fixation of inversions by positive
selection is essential to the evolution of many species.

Despite many examples, we have no quantitative sense for the
contribution of inversions to genetic variation. The argument that
inversions are fundamental to adaptation is enormously burdened by

ascertainment bias. Inversions have been studiedwhen identified from
conspicuous, often dramatic, phenotypic effects4,5,36–40. They are not
scored like Single Nucleotide Polymorphisms (SNPs) where surveys
provide an enumeration sufficient to test broad evolutionary hypoth-
eses. For example, the relative frequency of synonymous versus non-
synonymous SNPs can estimate the fraction of substitutions that are
fixed by natural selection as opposed to genetic drift. In contrast,
inversion studies tend towards depth—detailed investigation of indi-
vidual variants—rather than breadth. In this investigation, we evaluate
the quantitative importance of inversions by comprehensively enu-
merating variants among a random sample of ten genomes from one
natural population.

A distinguishing feature of inversion polymorphisms is that the
composition of alternative alleles changes through time. Upon emer-
gence, the derived orientation is a single haplotype (nucleotide
sequence), and in the short term, it is likely to remain internally
homogeneous owing to suppressed recombination with the ancestral

Received: 16 May 2024

Accepted: 13 November 2024

Check for updates

1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA. 2Present address: Ecology, Evolution and Genetics Research
Group, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. e-mail: jkk@ku.edu

Nature Communications |        (2024) 15:10397 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8872-6281
http://orcid.org/0000-0002-8872-6281
http://orcid.org/0000-0002-8872-6281
http://orcid.org/0000-0002-8872-6281
http://orcid.org/0000-0002-8872-6281
http://orcid.org/0000-0002-5485-6395
http://orcid.org/0000-0002-5485-6395
http://orcid.org/0000-0002-5485-6395
http://orcid.org/0000-0002-5485-6395
http://orcid.org/0000-0002-5485-6395
http://orcid.org/0000-0001-9480-1252
http://orcid.org/0000-0001-9480-1252
http://orcid.org/0000-0001-9480-1252
http://orcid.org/0000-0001-9480-1252
http://orcid.org/0000-0001-9480-1252
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54534-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54534-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54534-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54534-1&domain=pdf
mailto:jkk@ku.edu
www.nature.com/naturecommunications


orientation. The ancestral orientation should be internally variable,
composed of many different haplotypes. The amount and pattern of
variation will change through time contingent on selection and the
position-dependent rate of gene flux. Flux refers to the combined
effect of double crossovers and gene conversion exchanging variation
between orientations41–43. A suspension bridge pattern44,45, where
divergence between inversion orientations is greatest at the break-
points and gradually declines to its lowest value in the middle, is pre-
dicted if gene flux occurs most frequently in the middle of
inversions42,46 or if there is epistatic selection on the breakpoints
themselves47. To test these predictions, we score nucleotide sequence
variation across inverted genome regions and compare the estimates
within and between orientations to the genome wide pattern.

Nucleotide differences can reveal the historical signature of nat-
ural selection48,49, but they do not indicate how inversions generate
phenotypic differences or how those phenotypic effects translate into
fitness variation. Altered gene expression is frequently posited as the
cause of phenotypic effects simply because the physical rearrange-
ment of DNA can affect expression (a position effect). This is most
likely for genes near the inversion breakpoints where rearrangement
can move coding DNA away from regulatory elements such as pro-
moters or enhancers. Alternatively, orientations may differ in gene
expression because rearrangement captures pre-existing variation,
e.g. SNPsor indelswithin the reversed sequence, and it is thesevariants
that are responsible for expression differences. We test the breakpoint
and capture hypotheses by reanalyzing data from a recently published
eQTL mapping experiment. The eQTL experiment used the same col-
lection of genomes that we score for inversions in the present paper
enabling reanalysis of expression differences in direct relation to
inversion genotype calls.

In this paper, we provide a comprehensive survey of inversion
polymorphisms that segregate within a single natural population ofM.
guttatus. We interrogate 64 inversions, each of which contains at least
two genes, for patterns of gene expression and nucleotide sequence
variation. We test alternative hypotheses for how fitness variation
emerges from inversions. The “breakpoint hypothesis” predicts ele-
vated gene expression variation at genes neighboring inversion
breakpoints, relative both to genes within the interior of inversions
and the remainder of the colinear genome. We also expect higher
sequence divergence close to breakpoints. The captured alleles
hypothesis predicts no specificity to breakpoints (in either expression
or sequence variation) but a non-random and asymmetric distribution
of variation within and between ancestral and derived orientations.
The selection regime almost certainly varies among loci in this popu-
lation, but we find patterns that clearly favor the capture hypothesis
over the breakpoint hypothesis.

Results
Inversion discovery
We identify 64 distinct inversions (summarized in Supplementary
Data 1) from ten whole genome assemblies of M. guttatus. Each
assembly is from an unrelated plant derived from one natural popu-
lation (IronMountain, hereafter IM50,51). Each inversion is characterized
by a stretchof sequence that alignsnegatively to the referencegenome
with high homology (IM767, one of the ten assemblies, is used as the
reference). Thirty five of the 64 inversions are present in multiple
alternative lines, exhibiting the same breakpoints relative to the
reference genome. We treat these as distinct copies of the same
alternative allele. The size of inversions ranges from 5 kb to 4.1mb
(median ≈ 100 kb) and the number of genes within inversions ranges
from 2 to 791 (median = 9). Our criteria for calling inversions are
conservative and many small rearrangements, particularly those out-
side of genic regions or encompassing fewer than two genes, are not
included in our survey (see “Genome assemblies and inversion calling”
section of the Methods).

We find two large inversions, on chromosomes 6 and 11, pre-
viously discovered from genetic mapping studies40,52, but the current
genome assemblies reveal aspects of their morphology. inv_24 (on
chromosome 6, 1.3mb to 5.4mb coordinates on the IM767 reference)
appears to be a multi-part rearrangement involving at least three
mutational changes from the ancestral sequence (Fig. 1a). The middle
portion of inv_24 is colinear with the ancestral orientation, but the
entire region shows complete recombination suppression in inversion
heterozygotes52,53. We also find two cases of nested inversion:
inv_6a/inv_6b (chromosome 1) and inv_10a/inv_10b (chromosome 2).
For each, two alternative lines exhibit inversions from the reference
genome within the same general region, but with distinct breakpoints
in each alternative line. Thus, three distinct alleles segregated among
ten lines for inv_6a/6b and inv_10a/10b. These cases contribute to the
growing catalog of complex, multi-part inversions segregating in
Mimulus54,55.

Nucleotide diversity
To evaluate nucleotide diversity patterns, we scored genes within
inversions distinguishing those closest to the breakpoints from those
in the interior. These were compared to genes just outside the inver-
sion aswell as the remainder of the genome. Using genome assemblies
from four outgroup species, we were able to polarize 54 of the inver-
sions, calling the reference line orientation Ancestral or Derived. As
expected from theory44,45, nucleotide diversity patterns differ sub-
stantially between Ancestral and Derived orientations (F2,335 = 143.77,
p <0.001). The average nucleotide diversity within the ancestral
orientation (πAA) is nearly 4.6 times higher than within the derived
orientation (πDD) and sequence divergence between arrangements
(πAD) is about 60% greater than πAA (Fig. 1b). Importantly, πAA within/
near inversions is equivalent to the genomewide average (horizontal in
Fig. 1b); the inversion effect is evident only inπDD and πAD. Among the
genes within inversions, there is no difference in genetic diversity
between thoseclose to thebreakpoints and those to the interior. There
is a significant attenuation of the differences (πAA >πDD andπAD >πAA)
as we move to those genes nearest the breakpoints but outside the
inversion (F4,335 = 2.86, p <0.05).

Diversity patterns also depend on the relative frequencies of the
two orientations (Fig. 1c) and the size of the inverted region (Fig. 1d).
For both frequency (F2,130 = 4.03, p =0.02) and size (F2,130 = 3.08,
p =0.05), there is significant slope heterogeneity, but the regressions
for individual components (πAA, πDD and πAD) are only marginally
significant or non-significant. Intra-orientation variation appears
positively correlated with population frequency (Fig. 1c), but only the
πAA regression is significantwhen considered in isolation. Thismay just
reflect lower power forπDD; there are fewer estimates for this contrast
because it can be calculated only when the derived orientation is car-
ried by at least two lines (28of 54cases). BothπDD andπAD declinewith
inversion size and the πDD reduction is probably stronger than evident
in Fig. 1d. The largest inversion, inv_24 (Fig. 1a), does not yield aπDD for
the present analysis because it is carried by only one of the ten lines.
However, a previous survey of this genomic region revealed complete
internal homogeneity (πDD�0)of inv_24over its entire4.1mb length52.

The equivalence of diversity in the interior of inversions with
genes neighboring the breakpoints suggests that divergence is not
elevated at breakpoints. However, Fig. 1b–darebasedongenes and the
breakpoints generally reside in intergenic regions. To evaluate diver-
sity in intergenic regions, we calculated statistics within 2 kb windows
across each inversion including 20 kb beyond each breakpoint. Four
examples are reported in Fig. 2, the full set as Supplementary
Figs. 1–63. These trajectories are routinely incomplete, broken in pla-
ces where reliable sequence alignments between lines are impossible
owing to the very high sequence and insertion/deletion variation that
segregates inM. guttatus. Despite these difficulties, the overall pattern
is clear: Nucleotide diversity fluctuates idiosyncratically across

Article https://doi.org/10.1038/s41467-024-54534-1

Nature Communications |        (2024) 15:10397 2

www.nature.com/naturecommunications


inversions. There is no consistent tendency for πAD to peak at or near
breakpoints.

The window-based diversity calculations also indicate the
respective effects of mutation and gene flux in generating variation
within the derived orientation (πDD). Both processes will increase πDD

but they yield different spatial signals. Mutation will randomly dis-
tribute differences across an inversion while flux should generate
localized introgression tracts. The latter are evident as highly localized
peaks in πDD trajectories, particularly in cases where the derived
orientation harbors little variation on average (e.g. inv_16 and inv_27 in
Fig. 2).Mutationwill introduce variation in a statistically homogeneous
way across the derived orientation. In the short term, this corresponds
to a Poisson expectation for SNPs per window. The observed dis-
tribution is much ‘clumpier’ than Poisson suggesting that gene flux is
the primary source of variants for πDD (Supplementary Figs. 1–63).

Gene regulation
We find no evidence that the overall genetic variance in gene expres-
sion is inflated by inversions. The ten genomes characterized here for
inversions were recently used in a multi-parental eQTL mapping
experiment53. Each of the nine ‘alternative’ genomes was crossed to
IM767 and each of these nine F1 plants was self-fertilized to produce F2
plants. Each F2 was measured for gene expression in leaf tissue

(n = 1588). This experiment produced estimates for the genetic var-
iance in expression for nearly 13,000 genes and for the proportion of
that variation at each gene that is generated by the DNA surrounding
the gene, i.e. the cis-eQTL. Locating genes inside/outside inversions,
we find no difference between genes within inversions versus those in
colinear portions of the genome, not for the overall genetic variance
nor for the cis component of that variance. There is no difference
between genes in the interior of inversions relative to those close to
the breakpoints (Supplementary Fig. 64).

Despite the negative result on magnitude, there is clear evidence
that inversions ‘partition’ expression variation. This can be shown by
reanalyzing the eQTL data in direct relation to our inversion calls of
each line for each inversion (see “Gene expression calculations” sec-
tion of the Methods). In each of the nine F2 populations (Fig. 3a), we
can scoreeachplant at the cis-locusof any expressedgenes as0, 1, or 2,
depending on howmany copies of the alternative line allele they carry.
The regression of expression onto allele count is the ‘average effect’ of
the alternative allele56 in that particular cross. These regressions are
reported for one gene across all nine F2 populations in Fig. 3b. The cis
locus at eachof the nine alternative genomes coulddifferentially affect
expression relative to IM767, and in principle, each may do so in dif-
fering ways. The eQTL mapping experiment demonstrated that cis
eQTLs are usually allelic series with 3–5 distinct alleles53.

Fig. 1 | The physical arrangement of DNA for the largest inversion and the
distribution of nucleotide variation across all inversions. a Inv_24: Each exon of
IM767 from the interval of 1 to 7mb of Chromosome 6 was mapped to IM664 (y-
axis): blue = forward alignments (+), red = reverse alignments (−). The inversion
contains two distinct sections of negative alignment separated by a positive
alignment. b The average (and distribution) of nucleotide diversity (π) is reported
ancestral-ancestral (πAA), ancestral-derived (πAD), and derived-derived (πDD) com-
parisons for genes within inversion interiors (left), inside the breakpoints (middle),
and immediately outside breakpoints (right). The dotted line is the mean π for

genes across the colinear genome.Meanswere compared by ANOVAand the bands
are 95% confidence intervals. Samples sizes for interior genes are n = 51, 51, and 26
for AA, AD, and DD, respectively. The corresponding n are 54, 53, 28 for inside
breakpoints and n = 54, 53, 27 for outside breakpoints. The diversity statistics are
reported as a function of (c) the frequency of the derived orientationwithin IM and
(d) the physical size of the inversion. In c, no estimate is reported for πDD where
q = 0.1, because interval variation cannot be calculated unless there are at least two
lines carrying the orientation. Points have been ‘jittered’ slightly for q to reveal
distinct observations. Source data are provided as a Source Data file.
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To assess inversion effects, we partition the full set of estimates
(the regression slope from each cross) based on whether each alter-
native line shares the same inversion orientation as the reference
genome (homogenous crosses) or carries the inverted orientation
(segregating crosses). If the inversion is inconsequential for expression
(our null hypothesis), average effect estimates should be no more
similar within cross types than between cross types. Figure 3b illus-
trates a gene that exhibits an inversion effect. Those lines that share
the reference orientation tend to reduce expression while the lines
carrying the inversion (and thus differ in orientation from the refer-
ence) increase expression. Consequently, the average pairwise differ-
ence within cross types (0.236) is much lower than between cross
types (0.960). Applying this calculation across all genes within inver-
sions, the average between cross types is significantly greater than
within (p < 0.0001, Fig. 3c left). Significance was established by per-
muting estimates across the inversion classification of lines within
genes. The permutation distributions for each statistic (histograms in
Fig. 3d) do not encompass the observed values (arrows in Fig. 3d): cis-
eQTL effects are strongly predicted by inversion status (p < 0.0001).

A second notable feature of the distribution of expression varia-
tion is revealed by the subset of inversions where both Ancestral and
Derived orientations are carried by at least two lines. For these inver-
sions, we can subdivide the intra-cross divergence into within-
Ancestral and within-Derived components (Fig. 3c, right). We
observe greater similarity of genetic effect estimates within the
Derived orientation than within the Ancestral (p <0.0001 from per-
mutation, Supplementary Fig. 65). This pattern is also evident in the
specific case of MgIM767.06G148700 (Fig. 3b) where the derived
orientation alleles not only have a different average effect than
ancestral orientation alleles, but the lines are more consistent in their
effect. As a final analysis, we ignored the inversion classification and
considered the average pairwise difference for genes within the
inversion to those throughout the rest of the genome. We find no
difference in themagnitude of differences (Supplementary Fig. 64) for
genes within inversions versus the remainder of the colinear genome.
This confirms the negative result—the genetic variance in expression is

not greater within inversions thanacross the colinear genome—thatwe
obtained by classifying estimates taken direct from the eQTLmapping
experiment.

Discussion
The major fitness effects hypothesized to emerge from inversions are
(a) meiotic aberrations produced by inversion heterozygotes, (b)
position effects of sequence rearrangement, and (c) the collection of
coadapted alleles into recombination-suppressed haplotypes44. We
cannot testwhether the production of genetically unbalancedgametes
(hypothesis a) is important from the present experiment, but the
accumulation of evidence in Mimulus is not supportive. Eight large
inversions, previouslymappedwithin theM. guttatus species complex,
have been implicated in the full array of ‘inversion phenomena’
includingmeiotic drive7,57, local adaptation and speciation58–63, and the
persistence of fitness variation within natural populations40,52. There is
no evidence for underdominance owing to meiotic imbalances. Even
for the traits most prone to this effect (e.g. pollen viability), inversion
heterozygotes have intermediate phenotypes52 or the heterozygotes
resemble the more fit homozygote40,64. Here, we present results for a
new collection of inversions, only 2 of 64 known previously. Both
sequence evolution and gene expression variation at these loci favor
hypothesis (c) over (b); the internal content of inversions appears to be
more evolutionarily important than their breakpoints.

Considering gene sequence evolution, Berdan et al.44 recently
reviewed theoretical predictions for the evolution ofπAA,πAD, andπDD

over the genomic span of inversions. When a sequence is initially
inverted by mutation, and shortly thereafter, we statistically expect
πDD =0 and πAA =πAD, with the latter diversity statistics equaling the
genome average. However, the way that these statistics change as the
inversion ages should be different depending on whether selection
actsmainly on the breakpoints or on loci to the interior. If the selection
maintaining the inversion is focused on the breakpoints, a suspension
bridge pattern is predicted for πAD, greatest at the breakpoints with a
gradual decline to its lowest value in themiddle. In contrast, if genes to
the interior are the actual targets of selection,πAD peaks should not be

Fig. 2 | Nucleotide diversity by position across four inversions. The trajectories
for πAA, πAD, and πDD are reported over the genomic regions containing inversions
(a) 16, (b) 25, (c) 27, and (d) 36. The vertical broken lines indicate the estimated

breakpoints for each inversion. There is πDD trajectory for inv_36 because the
derived orientation is carried by only one line.
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specific to the breakpoints. For the Mimulus inversions, the average
πAD for genes close to the breakpoints is indistinguishable from the
average of the interior (Fig. 1b) and peaks of divergence occur idio-
syncratically across the sequence space from one breakpoint to the
other (Fig. 2). The haphazard location of πAD peaks suggests that
selection is acting more on the variants captured by inversions, which
will naturally vary in location, than by breakpoint effects.

The variation internal to the ancestral orientation, πAA, is equal
(on average) to the overall nucleotide diversity (π) in colinear parts of
the genome (dotted line in Fig. 1b). In contrast, variation within the
derived orientation (πDD) is much lower, which suggests that most
inversions segregating in the IM population are evolutionarily young
(Fig. 1b). Despite their apparent youth and the effect of gene flux,most
inversions exhibit substantially elevated sequencedivergencebetween
orientations relative to ancestral (πAD > πAA). This πAD >πAA tendency
should emerge through time, because we expect πAD ≈πAA when an
inversion is first produced bymutation. The spatial scale of sampling is
a critical consideration here. The ten genomes of this study are from
unrelated plants within one natural population (IM). Our estimates for
πAA and genomewide π are within this population.M. guttatus exhibits
substantial variation among populations with Fst ranging from 0.1 to

0.5 depending on geographical distance62. The mean πAD (0.029) for
inversions is a moderate value for nucleotide diversity between gene
sequences from different populations. It is possible that inversion
orientations are sampled fromthis larger pool of variationwithderived
orientation introduced to IM through gene flow. In this model, where
geographical variation in selection is essential to inversion
persistence10,54, πAD >πAA should emerge early in the lifetime of
polymorphisms.

Nucleotide diversity within inversion orientations is correlated
with their physical size and population frequency (Fig. 1c, d). The slight
tendency towards lower variation within the less common orientation
could reflect a population size effect. An inversion effectively splits the
overall population of alleles into two sub-populations based on
orientation. These subpopulations are genetically connected (gene
flux is analogous to gene flow) but drift might remove variation more
rapidly from the smaller subpopulation, i.e. the less frequent orienta-
tion. Alternatively, the decline of πAA with derived orientation fre-
quency (Fig. 1c) might result because the latter quantity is correlated
some other critical variable such as inversion age.

The decline of both πAD and πDD with inversion size (Fig. 1d) is
notable because it suggests a relationship between inversion size and
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age. Previous studies7,52 on twoof the largest inversions (inv_48which is
part of the meiotic drive locus on chromosome 11 and inv_24 on
chromosome 6) had concluded recent origin based on very low
interval variation combined with limited geographic spread. Both
inversions are maintained at intermediate frequencies in IM owing to
conflicting selection pressures. A recent theoretical study65 suggests
that small rearrangements are likely to be fixed by selection, while
intermediate-to-large inversions are more likely to be maintained as
balanced polymorphisms through associative overdominance. Asso-
ciative overdominance is entirely plausible for both inv_24 and inv_48,
but an incisive test of the model based on a survey across inversions
will require information on the rate that inversions of different sizes
are produced by mutation.

The breakpoint hypothesis for inversionsmakes a clear prediction
for gene expression. If the physical reversal of the DNA sequence
affects fitness by disrupting gene regulation, we expect that break-
points should emerge as cis-eQTLs, i.e. loci that affect the expression
of proximal genes66. Breakpoints clearly are cis-eQTLs inMimulus, but
this is not compelling evidence that they are causal to variation. In the
IM population, nearly all genes exhibit cis-regulatory variation, often-
times as an allelic series with three to five distinct alleles53. A random
partitioning of ten genomes into two groups (simulated inversion
orientations) will usually yield a difference in mean expression
between partitions. When we ask the more informative question of
whether the genetic variance is elevated in breakpoint-proximal genes,
the result is negative (Supplementary Fig. 64). Breakpoint genes are
notmore variable in expression than those to the interior of inversions
or throughout the rest of the genome.

If an inversion is favored because the derived orientation captures
pre-existing variation in expression, there will be no immediate effect
on theoverall expression variance in thepopulation. Incremental shifts
in thegenetic variance in expressionare likely tooccur subsequently as
orientations change in frequency, but these shifts can have positive or
negative effects on the overall variance. The capture model does
predict a partitioning of expression variation between inversion types,
which is strongly supportedby theMimulusdata (Fig. 3c, d).Moreover,
the partitioning is predicted to be asymmetric. The derivedorientation
should contain less variation than the ancestral orientation, particu-
larly when most genes have multiple cis-regulatory alleles segregating
in the population and only a single allele is captured by the inversion.
The predicted asymmetry in internal expression variability (ancestral
versus derived) is confirmed by these inversions (Fig. 3c, right).

In summary, both aspects of the data—sequence and expression
variation—support the captured alleles hypothesis for inversions.
Peaks of divergence between orientations are idiosyncratically dis-
tributed across inverted regions for both features. Of course, the
selection regime is likely heterogeneous across inversions and break-
point effects may be critical for some loci. More generally, the actual
selection regime acting on alleles to the interior of inversions are not
identified by these patterns. Polymorphism can be maintained locally,
because each orientation is subject to conflicting costs and benefits
within the IM population. The meiotic drive locus (associated with
inv_48) is an example where conflicting gametic and zygotic selection
make the polymorphism locally stable7,40. Alternatively, varying selec-
tion across the range of a species could maintain polymorphism
because the inversion captures alleles co-adapted for local environ-
mental conditions10. A large inversion on chromosome 8 is associated
with inter-population difference in life history, specifically the annual/
perennial phenotypic polymorphism of M. guttatus58. The ‘perennial’
orientation at this locus does occur in annual populations67, but that
may be due to recurrent immigration rather than local advantage. The
selection pressures acting on inversion polymorphisms are most
directly estimated by measuring survival and reproductive success of
alternative genotypes under natural conditions. Field studies assessing
inversion effects on survival and reproductive success have historically

focused on individual inversions. An important step for future studies
will be to develop and implement methods to dissect fitness effects
owing to multiple loci given that inversions are likely to segregate at
many positions across the genome.

Methods
Genome assemblies and inversion calling
The 10 genomes are derived from a large panel of lines, each created
by single seed descent from an independent maternal family. These
families were sampled from the Iron Mountain population50 of M.
guttatus (syn Erythranthe guttata) in central Oregon, U.S.A.
(44.402217N, 122.153317W).We assembled genomes for IM155, IM444,
IM502, IM541, IM664, IM909, IM1034, and IM1192 by first extracting
high molecular weight DNA from each line. These lines had been
confirmed to be individually homozygous and unrelated to each other
through previous Illumina sequencing68. The assemblies are haploid
(given line homozygosity). The University of Georgia genomics facility
made Sequel II CLR libraries and sequenced each using PacBio
according to themanufacturer’s instructions. Each line was sequenced
to ~250–300x coverage. We assembled sequence contigs using canu
2.1.169, which yielded contigs 4–15mb in size. Next, we used genetic
mapping data53 to order and orient the contigs into pseudo-
chromosomes. Importantly, all the inversions identified below are
within contigs and thus inference does not depend on the ordering of
contigs frommapping data. The other two genome assemblies (IM767
and IM62) were produced by the Joint Genome Institute70 from DNA
extracted with the same protocol as the other lines. The IM767 and
IM62 assemblies are used with permission.

After testing many bioinformatic tools, we identified inversions
from the synthesis of results from three distinct analyses. Sequence
variation is remarkably high in Mimulus, and the abundance of point
mutations and insertion/deletions makes alignment very difficult
outside of genic regions. We first applied AnchorWave71 to detect
inversions by aligning each alternative genome, chromosome by
chromosome, to IM767. This program, which was designed for highly
variable organisms like corn (or Mimulus), establishes ‘anchors’ as
colinear blocks of sequence between aligned chromosomes. Coding
sequences are the primary building blocks of these anchors. Anchors
can be positive or negative alignments between assemblies; inversions
are called from negative alignments. We implemented AnchorWave,
chromosome by chromosome, using custom Python scripts. We used
default parameter values except for “I” which we reduced from 2 to 1.
This code and all other pythonprograms described below, are publicly
accessible on github (https://zenodo.org/records/14013030) with
documentation explaining their use.

AnchorWave detected 178 inversions across the nine alternative
lines relative to IM767. Oftentimes, the same inversion was detected in
multiple lines, and after distilling these cases, we identify 64 non-
redundant inversions. To refine the location of inversion breakpoints
(which emerge as inter-anchor intervals from AnchorWave), we map-
ped exon sequence from all genes annotated in the IM767 assembly
(our reference) to each alternative genome using Minimap272 with
settings updated to account for the high variation present even in
coding sequences. Treating exons as genetic markers, we confirmed
the reversal of both order and mapping orientation (positive or
negative) of markers within the Anchorwave predicted inversions. We
could resolve breakpoint regions to smaller intervals for many inver-
sions using the exon mappings. For the third analysis, we applied
‘pipeline 3’ from Zhou et al.73 mapping each chromosome of each
alternative genome to IM767 using Minimap2 followed by inversion
calling using Syri74. This method, which is not explicitly focused on
coding sequences, identified 715 total inversions. This reduces to 400
non-redundant inversions across lines (reported as Supplementary
Data 2). We find that pipeline 3 usually ‘captures’ Anchorwave inver-
sions (those in the set of 64 are contained with the larger collection).
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Syri identifiedmany additional inversions, but these are typically small
and most do not contain even a single complete gene. While many of
the pipeline 3 predicted variants may be real, we do not consider them
further in this study. Our focus here is on sequence divergence within,
and expression of, genes (Figs. 1–3). The pipeline 3 calls corresponding
to AnchorWave inversions were used to refine breakpoint estimation.
Since Syri yields a point estimate insteadof a range for breakpoints, we
accepted the Syri estimate whenever it fell within the interval pre-
dicted by the twopreviousmethods.When therewas no estimate from
Syri, we chose the center of the range from exon mapping as the
putative inversion breakpoint.

For a subset of loci, we used the long read data to confirm that
putative inversions were not due to contig assembly error. Using
Minimap2, we mapped the original PacBio long reads from several of
the lines, first to the IM767 reference genome and then to the alternate
lines carrying the alternative orientation. With IM767 as the mapping
reference, we confirmed that the long reads from IM767 DNA aligned
in fully colinear way to the IM767 assembly across the predicted
inversion breakpoints. We confirmed that long reads from the alter-
native line did not, either because they did not map at all or because
only one end the long read mapped (the remainder ‘soft clipped’ and
not aligned). For these partially mapped sequences, we split the ori-
ginal long read (usually 10–50kb in length) into two fasta files,
breaking the sequence beyond the mapped portion. We then remap-
ped the two ends asdistinct sequences. Routinely, wewereable get the
split reads tomap, each to one end of the inversion with the predicted
change in alignment direction. We repeated this procedure with the
long-read mappings to the alternative genome assembly. Here, we
obtained the same outcome except that splitting was necessary on the
long reads from the IM767 DNA.

We polarized inversion orientations by inspecting inverted
regions in genome assemblies from more distantly related Mimulus
genomes. We used AnchorWave and exon mapping to alignM. tilingii,
M. nasutus, M. cardinalis and M. lewisii to IM767. M. tilingii and M.
nasutus are close relatives of IM M. guttatus, each about twice as
sequence divergent from IM as IM sequences are to each other. M.
cardinalis andM. lewisii aremore distantly related75. Formost inverted
regions, we could identify the homologous sequence region in multi-
ple outgroups and the ancestral orientation was unambiguous: All
outgroup species shared the same orientation and it matched either
IM767 or the alternative line. In some cases, the orientation of M.
tilingii or M. nasutus differed from the other groups, suggesting that
(a) the inversion segregatedwithin the commonancestor of IM and the
outgroup species, or that (b) the inversion was produced by mutation
within one of the descendant lineages but has since introgressed into
the other lineage. In these cases, we assigned orientation based on the
most distantly related, aligned outgroup (M. cardinalis and/or M.
lewisii). Ten of the 64 inversions could not be polarized because the
close relatives differed from each other in orientation and extensive
structural changes made the alignments toM. cardinalis andM. lewisii
unintelligible.

Nucleotide diversity calculations
For nucleotide diversity estimation (and testing), we distill observa-
tions from each inversion into a single collection of values (πAA, πAD,
and πDD) and then averaged over genes within the inversion. We then
average estimates across inversions, which guarantees an equal con-
tribution of each inversion to the overall results (distinct inversions are
the units of replication). We used Mummer 3.076 and SVMU77 to call
SNP variants across positions thatwere reliably alignedbetween IM767
and the other genome assemblies. Using custom python scripts, we
determined π between each pair of lines for each gene (from start to
stop codon) across the genome. Genes were classified as (a) in the
interior of inversions, (b) within the inversion but nearest the break-
points, (c) nearest to breakpoints but outside an inversion, or (d)

residing in the remainder of the (colinear) genome. For the 54 of 64
inversion that could be polarized as ancestral or derived, we assigned
the intra-orientation nucleotide diversity estimates as πAA or πDD. The
inter-orientation diversity, πAD, could be assigned to all inversion
related genes.

We tested for differences in diversity statistics using a two factor
ANOVA with location-relative-to-inversion (interior, inside breakpoint,
or outside breakpoint) as one factor and contrast (πAA, πAD, or πDD) as
the second factor (Fig. 1b). The genomic background estimate for π is
reported as a constant (the confidence interval is miniscule because it
is based on thousands of genes). We used a general linear model with
contrast as a categorical factor and either derived frequency (Fig. 1c) or
Log-transformed inversion size (Fig. 1d) as a continuouspredictor. This
model included an interaction to test for slope heterogeneity. Given
significant heterogeneity for both, we performed separate linear
regressions to estimate the distinct responses of πAA, πAD, and πDD to
each predictor. We also calculated πAA, πAD, and πDD in 2 kb windows
across each inversion without consideration of gene boundaries.
These traces were initiated 20kb upstream of the left breakpoint of
each inversion and terminated 20 kb downstream of the right flank
(Fig. 2, Supplementary Figs. 1–63). These calculations could only be
performed where homologous sites could be confidently aligned
between genomes. Consequently, π trajectories through intergenic
regions routinely have gaps.

Gene expression calculations
For the first analysis, we directly extracted estimates for the genetic
variance in expression per gene, and the cis-component of that var-
iance, from Supplementary Table 4 of the eQTL paper53. This analysis
was limited to the 12,987 genes that could be ascertained in all ten
genomes and that passed other filters. We reanalyzed the data here to
include more genes, all with estimates from at least 5 of the 9 crosses.
For determining the average level of expression of each genotype in
each F2 panel (homozygous for the IM767 allele, heterozygote, or
homozygous for the alternative line allele), we started with the raw
RNAseq read counts for each gene53. We then normalized for the total
number of RNAseq reads per plant, which gives expression levels at
each gene in Counts per Million (CPM). We excluded genes with an
average CPM<0.5. Next, we standardized each gene by dividing indi-
vidual plant expression levels by the CPM of that gene so that the
average is 1.0 across all F2 plants. We applied linear regression to each
genewithin each crosswith standardized expression as the dependent
variable and the alternative allele count (0, 1, or 2) as the independent
variable. The regression slope is the average effect56 of the alternative
allele in that cross for that gene. Given our standardization, an average
effect of 0.1 means that heterozygotes have ≈ 10% higher expression
than the IM767 homozygote. Applied to all ascertained genes, we find
that the mean average effect is close to zero (a mixture of positive and
negative values acrossgenes and crosses). Themeanabsolute value for
the average effect (horizontal dotted line in Fig. 2B) was 0.182 (S.E.M. =
0.00056).

The genetic variance in expression, Vg, and the cis-component of
that variance, Vg(cis), were treated as the dependent variable in an
ANOVA with gene location (outside flanking, inside flanking, inversion
interior, or background genome) as the predictor (Supplementary
Fig. 64). We performed a similar test on the reanalysis of the data on
the effect estimates (regression slopes) for each gene within each
cross. For this, we calculated the average pairwise difference between
estimates for each gene and tested whether this was affected by gene
location (Supplementary Fig. 64). Next, we considered only genes
within inversions and partitioned pairwise differences statistics within
and between cross types (Fig. 3c). For the subset of inversions with
more than one line carrying both the Ancestral and Derived orienta-
tions, we partitioned the within-cross type statistic into Ancestral and
Derived components. To test for differences (within versus between
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and Ancestral-within versus Derived-within) we permuted inversion
orientation versus genetic effect estimates within genes. We then
compared the observed differences (Fig. 3c) to the distribution of
differences for each contrast across 10000permuted datasets (Fig. 3d,
Supplementary Fig. 65).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Eight of the ten genome assemblies (IM155, IM444, IM502, IM541,
IM664, IM909, IM1034, and IM1192) used in this study have been
deposited in both NCBI under accession PRJNA1183383 andMimubase
[http://mimubase.org/FTP/Genomes/]. The other two assemblies from
Iron Mountain, IM767 and IM62, were created by the Joint Genome
Institute and are used here with permission. Source data are provided
with this paper.

Code availability
All python programs written for analysis of these data are available
through our Github page [https://doi.org/10.5281/zenodo.14013030].
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