Stacks Image 20108

For Academics

Normalise data

When you need to compare different data with very different value ranges.

With clusterSim library

If x is the normalised data and y is the old data, we would like to do y = (x-mean(x))/sd(x)

One way is to use the clusterSim library

library(clusterSim)

Then a variable can be normalised for mean=0, variance=1 using:

data.Normalization(data$FRE,type="n1")

As a bonus, there are other types of normalisation (other than type="n1"). For more information look at the help file. ?data.Normalization.

Without any library

Alternatively, use:

x<-sweep(y, 2, apply(y, 2, mean), "-")
x<-sweep(x, 2, apply(x, 2, sd), "/")
names(x)<-paste("s", names(x), sep="")

Note that if any values are 0 the normalisation will generate infinite values, which may need to be dealt with.

Previous Post 13 / 21 Post

Tag:

Sex chromosome papers RSS


Extreme heterochiasmy and high rates of sex-reversed recombination result in large yet homomorphic sex chromosomes in the Emei moustache toad
Link

The genome sequence of the harbour porpoise, Phocoena phocoena (Linnaeus, 1758)
Link

The genome sequence of a beetle, Pycnomerus fuliginosus Erichson, 1842
Link