Stacks Image 20108

For Academics

Normalise data

When you need to compare different data with very different value ranges.

With clusterSim library

If x is the normalised data and y is the old data, we would like to do y = (x-mean(x))/sd(x)

One way is to use the clusterSim library

library(clusterSim)

Then a variable can be normalised for mean=0, variance=1 using:

data.Normalization(data$FRE,type="n1")

As a bonus, there are other types of normalisation (other than type="n1"). For more information look at the help file. ?data.Normalization.

Without any library

Alternatively, use:

x<-sweep(y, 2, apply(y, 2, mean), "-")
x<-sweep(x, 2, apply(x, 2, sd), "/")
names(x)<-paste("s", names(x), sep="")

Note that if any values are 0 the normalisation will generate infinite values, which may need to be dealt with.

Previous Post 13 / 21 Post

Tag:

Sex chromosome papers RSS


Genetic Background and Sex Modulate Androgen Responses in Human Brain Microphysiological System
Link

The genomes of five mantises provide insights into sex chromosome evolution and Mantodea phylogeny clarification
Link

Sex chromosome dosage compensation in a sex reversing skink is not influenced by sexual phenotype
Link