Stacks Image 20108

For Academics

Lines

Often a model will show a difference between the two levels of a factor. R makes it easy to illustrate the difference graphically.

Our model is of the type:

mod1 <- (lm(dependent ~ independent(continuous) + independent(factor), data=data.frame.name)

An interaction term could also exist in the model. Example independent variables are temperature(continuous) and sex(factor).

Out final plot will look like this:

lineplot

If there is an interaction, the lines will not be parallel.

Start by making an empty plot, with title and labels for the axes

plot(data.frame.name$independent, data.frame.name$dependent, type='n', main='Title', xlab='independent variable', ylab='dependent variable')

Add points with a different colour for each of the levels of a factor

points(data.frame.name$independent[data.frame.name$factor=='level1'], data.frame.name$dependent[data.frame.name$factor=='level1'], col=1)   
points(data.frame.name$independent[data.frame.name$factor=='level2'], data.frame.name$dependent[data.frame.name$factor=='level2'], col=4, pch=20)

Make a small variable name for the predicted values from the model, for each of the levels.

fittedLevel1<-fitted(mod1)[data.frame.name$factor=='level1']
fittedLevel2<-fitted(mod1)[data.frame.name$factor=='level2']

Plot lines for each of the factor levels. Note that all x values are given first in the input, followed by all the x values

lines(c(min(data.frame.name$independent[data.frame.name$factor=='level2']),max(data.frame.name$independent[data.frame.name$factor=='level2'])), c(min(fittedLevel2),max(fittedLevel2)), col=1)
lines(c(min(data.frame.name$independent[data.frame.name$factor=='level1']),max(data.frame.name$independent[data.frame.name$factor=='level1'])), c(min(fittedLevel1),max(fittedLevel1)), col=4)

Finally, add a legend (the coordinates will depend on your data)

legend(18, 200, legend=c('level1', 'level2'), pch =c(1,20), col=c(1,4))
Previous Post 40 / 50 Post

Tag:

Sex chromosome papers RSS


Meiotic dynamics in a unique Australian marsupial provide new insights into the evolution of neo-sex chromosomes in the early stages of differentiation
Link

Insights into convergent evolution of cosexuality in liverworts from the Marchantia quadrata genome
Link

Repeated evolution of transcript dosage compensation of independently formed nematode neo-X chromosomes
Link